
50 The Delphi Magazine Issue 53

XML In Delphi, 3
by David Baer

In issues 48 and 50 (August and
October of 1999) we began to

explore the topic of XML in Delphi
by building a class framework with
which to load, manipulate and
write XML documents. We’ll con-
tinue here by adding additional fea-
tures to the framework. We’ll add
support for one Document Object
Model node type absent from the
initial implementation, and we’ll
add a variety of other capabilities
to make the life of users of the
framework a little bit easier.

Before getting down to the busi-
ness at hand, let me thank Chris-
tian Zietz for reporting a bug in the
code from the last instalment.
Christian alertly spotted the fact
that the MSXML implementation
provides a document property,
async, that has a default value of
True (recall, MSXML is the
Microsoft DLL housing their XML

services). This property desig-
nates whether or not a parse/load
operation must fully complete
before returning control to the
client process. The code presented
in the article did nothing to
override this default, and how the
demonstration code managed to
work (and on more than one
machine, on more than one conti-
nent!) remains a mystery. The
TXmlDDocument method LoadFrom-
File has been corrected to set this
property to False. Also, in prepar-
ing the code for this instalment, I
spotted another problem relating
to setting node parentage under
certain circumstances that has
been resolved.

Also before commencing, I need
to offer one small disclaimer. Due
to a miscommunication between
Our Esteemed Editor and myself
(the error being entirely mine), I’ve
learned that my deadline for sub-
mission of this piece is much

sooner than anticipated.
The code shown here, the
entirety of which is con-
tained on this issue’s disk,
works correctly for the
usage examples. But it has
not been tested to my full
satisfaction as of the sub-
mission date, and I do plan
to do some additional test-
ing. If you plan to copy the
code to your machine for
any purpose other than a
casual perusal, do please
check The Delphi Magazine
website for any corrective
updates.

A Fragment Of
The Imagination
The DOM framework pro-
vides a node type which we
didn’t bother to implement
in the earlier instalments.
The document fragment
node type is useful for
doing copy, cut and paste
operations when manipu-
lating an XML document in

place. It provides a convenient
node under which to organize
sub-structures as they’re being
built or modified.

The first article in this series dis-
cussed the inheritance structure
used in the framework. It may be
valuable to briefly review that
structure, shown in Figure 1. All
the concrete node types inherit
from a common base class,
TXmlDNode. Two intermediate
classes, TXmlDStructureNode and
TXmlDContentnode, are provided to
factor out child node management
responsibilities for only those con-
crete class types that actually
need them. As you might expect,
the TXmlDDocumentFragment class
derives from TXmlDStructureNode.

The document fragment may be
used as a parent for elements, text
segments, and so forth. You can
think of it as a temporary element
node that lives outside of any
document. In fact, the document
fragment itself can never be
included (ie, inserted or
appended) anywhere in a docu-
ment. And this is what makes it
somewhat useful.

If one needs a temporary parent
node, one could certainly create
an instance of an element or even a
document and just use that. But
the document fragment knows a
trick that’s not in the repertoire of
other node types. When a docu-
ment fragment is involved in an
insert or append operation, it
discreetly removes itself from the
picture. Only its child nodes are
actually inserted into the
destination.

Actually, the document
fragment merging ‘intellegence’
doesn’t live in its own class
methods. Instead the TXmlDNode.-
InsertBefore and TXmlDStructure-
Node.AppendChild routines are
responsible for providing the spe-
cial treatment. There’s one wrinkle
here that we need to address. The
nodes in our framework cannot be
children of multiple parents. If
nothing else, we rely on propa-
gated destruction of children
during parent destruction. So the
document fragment merging
process also removes the child
nodes from itself during insertion

TXmlDNodeTXmlDNode

TXmlDContentNodeTXmlDContentNode

TXmlDTTXmlDTextext

TXmlDCommentTXmlDComment

TXmlDCDATXmlDCDATTASectionASection

TXmlDStructureNodeTXmlDStructureNode

TXmlDDocumentTXmlDDocument

TXmlDAttrListTXmlDAttrList

TXmlDDocumentTXmlDDocument

TXmlDElementTXmlDElement

TXmlDocumentFragmentTXmlDocumentFragment

➤ Figure 1

January 2000 The Delphi Magazine 51

operations. At the end of this pro-
cess, the document fragment will
be empty.

Listing 1 shows the additions
and modifications to the frame-
work declarations made for this
instalment. There’s nothing partic-
ularly tricky in the implementation
of TXmlDDocumentFragment. Like the
other concrete node types, it sup-

plies overridden Create and
CloneNode methods. It also pro-
vides an empty override to the
abstract WriteToStream method.
This node can never be part of an
actual document and cannot be
called upon to output its contents.

As a TXmlDStructureNode deriva-
tive, TXmlDDocumentFragment has
access to the AttrList property,
which can be used to associate
attribute values with instances of

this node type. But, in this case,
that property has no practical
value. Attribute values provided
will not be copied when the docu-
ment fragment is inserted into
another structure.

Elementary, My Dear Watson
The next new feature provides sev-
eral easy mechanisms for access-
ing child elements. Let me just
restate an assumption I’ve been

type
TXmlNodeType = (xntDocument, xntElement,
xntDocumentFragment, xntText, xntComment,
xntCDATASection);

const
XmlNodeNames: array[xntDocument..xntCDATASection] of
String = ('#document', '', '#document-fragment',
'#text', '#comment', '#cdata-section');

type
. . .
TXmlDDocumentFragment = class;
. . .
TXmlDElementIterator = class;
TXmlDElementPattern = class;
TXmlDNode = class(TPersistent)
private
. . .
FTag: Integer;
FLevel: Integer;

protected
. . .
procedure SetLevel(Lvl: Integer);
. . .
procedure SetNodeName(const Value: TXmlName); virtual;
procedure InsertDocFragBefore(NewNode:
TXmlDDocumentFragment; ThisNode: TXmlDNode);

procedure SetParent(ParentNode: TXmlDStructureNode);
. . .

public
. . .
procedure ZeroAllTags;
. . .
property Level: Integer read FLevel;
property Tag: Integer read FTag write FTag;

end;
TXmlDStructureNode = class(TXmlDNode)
private
. . .
FElementCount: Integer;

protected
procedure AppendDocFragChild(NewNode:
TXmlDDocumentFragment);

procedure AssignAttrNodesToTreeNodes(ParXmlNode:
TXmlDNode; ParTreeNode: TTreeNode);

procedure AssignNodeToTreeNode(XmlNode: TXmlDNode;
TreeNode: TTreeNode);

. . .
function GetElementByName(const Name: String):
TXmlDElement;

function GetElements(Index: Integer): TXmlDElement;
. . .

public
. . .
procedure AssignTo(Dest: TPersistent); override;
. . .
function GetFirstChildElement: TXmlDElement;
. . .
property ElementCount: Integer read FElementCount;
property Elements[Index: Integer]: TXmlDElement
read GetElements;

property ElementByName[const Name: String]:
TXmlDElement read GetElementByName; default;

end;
TXmlDContentNode = class(TXmlDNode)
private
FValue: String;

protected
function GetNodeValue: String; override;
procedure SetNodeValue(const Value: String); override;

end;
TXmlDDocument = class(TXmlDStructureNode)
. . .
public
. . .
function CreateDocumentFragment:
TXmlDDocumentFragment;

. . .
end;
TXmlDElement = class(TXmlDStructureNode)
. . .
protected

. . .
function GetAsBoolean: Boolean;
function GetAsCurrency: Currency;
function GetAsDate: TDateTime;
function GetAsDateTime: TDateTime;
function GetAsInteger: Integer;
function GetAsString: String;
function GetAsTime: TDateTime;
function GetFirstTextNodeValue: String;
procedure SetAsBoolean(const Value: Boolean);
procedure SetAsCurrency(const Value: Currency);
procedure SetAsDate(const Value: TDateTime);
procedure SetAsDateTime(const Value: TDateTime);
procedure SetAsInteger(const Value: Integer);
procedure SetAsString(const Value: String);
procedure SetAsTime(const Value: TDateTime);
. . .
procedure SetFirstTextNodeValue(const Value: String);
. . .

public
. . .
function GetNextSiblingElement: TXmlDElement;
property AsBoolean: Boolean read GetAsBoolean
write SetAsBoolean;

property AsCurrency: Currency read GetAsCurrency
write SetAsCurrency;

property AsDate: TDateTime read GetAsDate
write SetAsDate;

property AsDateTime: TDateTime read GetAsDateTime
write SetAsDateTime;

property AsInteger: Integer read GetAsInteger
write SetAsInteger;

property AsTime: TDateTime read GetAsTime
write SetAsTime;

property AsString: String read GetAsString
write SetAsString;

end;
TXmlDDocumentFragment = class(TXmlDStructureNode)
protected
procedure WriteToStream(Stream: TStream;
FormattedForPrint: Boolean); override;

public
constructor Create;
function CloneNode(RecurseChildren: Boolean):
TXmlDNode; override;

end;
TXmlDElementIterator = class(TObject)
private
CurrNode: TXmlDStructureNode;
RootNode: TXmlDStructurenode;
Position: TList;
ElementPattern: TXmlDElementPattern;

protected
function NextElementInPattern: TXmlDElement;
function NextElementInStructure: TXmlDElement;

public
constructor Create(ContextNode: TXmlDStructureNode =
nil; const Pattern: String = '');

destructor Destroy; override;
function Next: TXmlDElement;
procedure Reset(ContextNode: TXmlDStructureNode = nil;
const Pattern: String = '');

end;
TElementPatternMatch = (epmNoMatch, epmPathMatch,
epmEndMatch);

TXmlDElementPattern = class(TObject)
private
RootNode: TXmlDStructureNode;
PatternPieces: TStringList;
PatternLevels: Integer;

protected
procedure ParsePattern(const Pattern: String);

public
constructor Create(ContextNode: TXmlDStructureNode;
const Pattern: String);

destructor Destroy; override;
function PatternMatchType(ELement: TXmlDElement):
TElementPatternMatch;

end;

➤ Listing 1

52 The Delphi Magazine Issue 53

using in designing these classes.
This framework is designed for use
with program-to-program data
transmissions. In this context, the
document structures will normally
be quite straightforward. In partic-
ular, element nodes will usually be
one of the following: they will
parent other element nodes (and
nothing else), they will parent a
single text segment node, or they
will parent nothing (being used to
exclusively provide attribute
values).

With that in mind, I felt it would
be useful to provide a property
that would make access to child
elements straightforward. As any
node type capable of hosting child
nodes would benefit from this, the
property is introduced in TXml-
DStructureNode. Actually, there are
two properties added for this pur-
pose: Elements and ElementByName.

Elements takes an integer index
parameter. An additional property,
ElementCount, provides just what
its name implies. The count value
is maintained as a byproduct of the
various insert and removal
methods of the base classes.

ElementByName takes a string
parameter that identifies the ele-
ment node name of interest. If mul-
tiple child nodes bearing the same
name exists, it returns only the
first. An exception is raised where
no element with the specified
name is present. I suspect that
ElementByName would be more fre-
quently used in day-to-day coding
than Elements, so it is defined as the
default property.

You may wonder why these
properties, differing only in param-
eter type, have one singular and
one plural name. For the answer,
you’d need to track down the
Delphi engineer who came up with
Fields and FieldByName. I’m just
trying to go with the flow here.

As You Like It
With the two previous properties,
we now have an easy way to get ref-
erences to the elements of interest
in our XML documents. What else
can we do to make our code more
concise and clear? How about a
mechanism that could allow us to
reference the content of a single

text node belonging to an element?
What’s more, how about providing
some convenient type conversions
while we’re at it?

A means for doing this has plenty
of precedent. Read-write proper-
ties like AsString, AsDate, etc are
well known to most Delphi practi-
tioners, and they seem to be just
what’s called for here as well. But
we’ll adapt them a little from their
conventional use.

To begin with, where’s the best
place to provide them? You could
make a case for making them prop-
erties of text nodes, in which case
their function would be just one of
type conversion (string to date,
etc). If, instead, we move them up a
level and make them properties of
the element, they can do just a bit
more work (and save class users
some coding). Once we have a ref-
erence to an element node, we
need not acquire a reference to its
text node to read or set the text
value. We just use the AsXxxx
properties instead.

The content of a text segment is,
of course, always a string. So the
AsString property performs no
conversion. Two others in this
property group, AsCurrency and
AsInteger, perform conversions
using Delphi’s standard service
functions: StrToInt, et al. The
resultant string representations of
these data types is consistent with
the standard ISO representations
preferred in XML numeric
formatting.

For Boolean values, the standard
calls for a string value of 0 for False
and 1 for True. So, the AsBoolean is a
trivial conversion requirement.
For date/time values, however,
we’ve got a bit more work to do.
Delphi doesn’t (to my knowledge
anyway) offer canned routines for
converting an ISO formatted date
or time value. We’ll need to ‘can’
one ourselves, and fortunately this
isn’t all that difficult.

An example of an ISO compliant
date/time string value is
2000-01-31T15:30:00. The hyphens
are not required, and a two-digit
year is even acceptable (of course
anyone still using just two digits for
years should be subjected to
highly public ridicule). Like dates,

there are several variations on
time values. The one shown above
specifies only seconds, but
finer-grained values are possible.
For further information on stan-
dard data format types used in
conjunction with XML schemas,
you may wish to take a look at the
W3C proposal for XML Data, which
discusses this subject in some
detail. You should be able to find it
at the location www.w3.org/
TR/1998/NOTE-XML-data-0105/.

Several conversion service rou-
tines are present in the XML
classes unit to enact all of this:
ISOStrToDate, ISOStrToTime and
ISOStrToDateTime do the more diffi-
cult string decoding. They do not
accommodate all the possible for-
mats, but offer a serviceable capa-
bility which should be adequate
for many situations. Converting
date/time values to string is quite a
bit easier, relying on the old Delphi
standby FormatDateTime routine to
do the grunt work.

Tag, You’re It
Before getting to the pick of the
litter of these enhancements, let’s
quickly look at two small but useful
extensions. I’m somewhat cynical
when it comes to the common
TComponent Tag property. These
can be misused in all kinds of ways.
Nevertheless, I was looking at the
MSXML-provided DOM services
recently, and wished mightily for a
simple four-byte node variable to
allow me to associate objects with
nodes. As you might guess, no
such thing exists.

Taking pity upon others who
might want the same of the
framework presented here, I
decided it would do no harm to
add a Tag property at the node
level. For good measure, I’ve also
included a node method
ZeroAllTags that will cause the Tag
values of a node and of all its
children to be cleared.

On another subject, you may
recall that in the last instalment, I
provided a means to assign an XML
document to a TTreeView.Items
property. It occurred to me later
that there was no reason to limit
the assignment to an entire
document. It might be appropriate

54 The Delphi Magazine Issue 53

at times to assign a sub-portion of a
document for visual display.

To accommodate this, I’ve
moved the AssignToprocessing out
of the TXmlDDocument class, and
placed it in TXmlDStructureNode.
Since TXmlDDocument derives from
TXmlDStructureNode, it retains the
treeview assignment capability.
This capability now also extends to
TXmlDElement and TXmlDDocument-
Fragment instances.

Walking The Walk
One of the more powerful features
in MSXML is the ability to acquire a
list of elements using a pattern
specification. The pattern pro-
vides a template for specifying
which nodes are of interest and
also provides a means of filtering
the result set based on attributes
values, for example. On the whole
this is an extremely flexible capa-
bility. It is actually a feature that is
frequently discussed in conjunc-
tion with the Extensible Stylesheet
Language (XSL). It provides the
input selection mechanism to feed
XSL transformations. But it has
potential uses outside that context
as well.

I had contemplated extending
the Delphi XML class framework in
a similar fashion. Unfortunately,
the more I studied the pattern
selection capabilities in MSXML,
the more I realized that the job was
not one to be undertaken lightly.
However, a more modest pattern
selection service could still be emi-
nently useful, and that’s what we’ll
look at next.

Two new classes were defined to
serve this goal: TXmlDElement-
Iterator and TXmlDElementPattern.
Refer to Listing 1 to see their
declarations.

TXmlDElementIterator actually
serves two purposes. It can be
used without any pattern to tra-
verse all child element nodes of a
TXmlDStructure node, or a pattern
may be provided to limit the ele-
ments returned. In both modes,
modifications to the document or
element structure will not disrupt
the iteration, provided the last-
obtained node is not destroyed
prior to the next Next invocation.
Resetting the iterator, possibly

switching patterns or start nodes
in the process, is done with the
Reset method.

In the first mode, where no pat-
tern is used, one first creates an
instance of an element iterator,
passing a TXmlDStructure node
instance, which specifies the start-
ing point, for the required parame-
ter. Thereafter, calls to the Next
method will return references to
child element nodes at all levels of
the subordinate structure. The ele-
ments returned in this process will
be in the same order as they would
be seen in the structure as repre-
sented in XML. When no element
nodes remain, Next returns a nil
value. The Next function in
TXmlDElementIterator calls one of
two internal methods to find the
next node. For the no-pattern
mode, this navigation is fairly
straightforward, as can be seen in
the GetNextElementInStructure
method, shown in Listing 2.

Navigation under the direction
of a pattern is a rather more com-
plicated affair, which I’ll describe
shortly. The patterns supported by
this implementation consist of ele-
ment names for each level, or a *
wildcard. The pattern is specified
as a single string, in which the
levels are separated by a / (slash)
character. Within each level, multi-
ple element names may be sup-
plied, these being separated by a |
(pipe) character (we’ll examine
several examples shortly). The
first level in the pattern represents
the child element level of the start
element. The iterator does not
return the start node itself.
Although the pattern string isn’t
rigorously parsed, spaces may be
included between the names and
separators for clarity.

Let’s consider a few examples.
The following pattern will cause all
third level elements under the start
node to be returned: * / * / *. To
obtain all Price elements under
OrderItem elements, under Order,
the pattern Order / OrderItem /
Price will get the job done.

Expanding that last example
even further, if we wanted to see
both Price and Quantity elements
at the third level, the pattern would
look like:

Order / OrderItem / Price |
Quantity

Although this scheme provides a
fair amount of flexibility, you’ll
notice that we’re limited to having
elements at one level only
returned for any pattern directed
iteration.

The pattern parsing and match-
ing is implemented as a separate
class, TXmlDElementPattern.
Although neither of these two
classes is very big, iteration under
control of a pattern is a somewhat
tricky business, so breaking those
responsibilities into two classes
helps manage the complexity.

But there’s an even better
reason to do this. If we regard this
as an application of the Gang of
Four strategy pattern, you can see
that a more sophisticated pattern
‘language’ can be installed at a
later date by supplying an
improved TXmlDElementPattern
implementation. No changes to
TXmlDElementIterator should be
needed to introduce the upgrade.

In fact, I’ve included a bit of
redundancy in the TXmlDElement-
Iterator method NextElementIn-
Pattern method in anticipation of
this possibility. The way things
stand right now, we know that we
need not look at any nodes a level
lower than that in the pattern. But
a more sophisticated approach
might return elements from differ-
ing levels. So we allow a small
amount of optimization to be sacri-
ficed to leave that door open.

The pattern iteration technique
works as follows. For the first Next
call, things aren’t too complicated.
We iterate through the structure in
the same manner that we do with
no pattern. However, when we
reach an element that’s not in the
path, we proceed back to the
parent as if it had no children until
we have an end node match or
have traversed the entire
structure.

Subsequent Next calls are a little
trickier. We know that the current
element matches the pattern, and
therefore all parent elements are

➤ Facing page: Listing 2

January 2000 The Delphi Magazine 55

{ TXmlElementIterator }
constructor TXmlDElementIterator.Create(
ContextNode: TXmlDStructureNode; const Pattern: String);

begin
inherited Create;
Position := TList.Create;
RootNode := ContextNode;
CurrNode := ContextNode;
if Pattern <> '' then
ElementPattern :=
TXmlDElementPattern.Create(RootNode, Pattern);

end;
destructor TXmlDElementIterator.Destroy;
begin
ElementPattern.Free;
Position.Free;
inherited Destroy;

end;
function TXmlDElementIterator.Next: TXmlDElement;
begin
Result := nil;
if CurrNode = nil then Exit;
if ElementPattern = nil then
Result := NextElementInStructure

else
Result := NextElementInPattern;

end;
function TXmlDElementIterator.NextElementInPattern:
TXmlDElement;
function GetFirstElementInPattern(
StartNode: TXmlDStructureNode): TXmlDElement;

var CandidateElement: TXmlDElement;
begin
Result := nil;
if StartNode.ElementCount > 0 then begin
CandidateElement := StartNode.GetFirstChildElement;
while ((CandidateElement<>nil) and (Result=nil))
do begin
case ElementPattern.PatternMatchType(
CandidateElement) of
epmEndMatch : Result := CandidateElement;
epmPathMatch : Result :=
GetFirstElementInPattern(CandidateElement);

end;
if Result = nil then
CandidateElement :=
CandidateElement.GetNextSiblingElement;

end;
end;

end;
function GetNextElementInPattern:TXmlDElement;
var CandidateElement: TXmlDElement;
function GetNextCandidate(StartNode:
TXmlDStructureNode): TXmlDElement;

begin
Result := TXmlDElement(StartNode).GetNextSiblingElement;
if Result = nil then begin
if StartNode.ParentNode <> RootNode then begin
Result := TXmlDElement(
StartNode.ParentNode).GetNextSiblingElement;

if Result = nil then
Result :=
GetNextCandidate(StartNode.ParentNode);

end;
end;

end;
begin
Result := GetFirstElementInPattern(CurrNode);
if Result <> nil then Exit;
CandidateElement := GetNextCandidate(CurrNode);
while ((CandidateElement <> nil) and (Result = nil))
do begin
if CandidateElement <> nil then begin
case ElementPattern.PatternMatchType(
CandidateElement) of
epmEndMatch : Result := CandidateElement;
epmPathMatch : Result :=
GetFirstElementInPattern(CandidateElement);

end;
if Result = nil then
CandidateElement :=
GetNextCandidate(CandidateElement);

end;
end;

end;
begin
if CurrNode = RootNode then
Result := GetFirstElementInPattern(RootNode)

else
Result := GetNextElementInPattern;

CurrNode := Result;
end;
function TXmlDElementIterator.NextElementInStructure:
TXmlDElement;

begin
if CurrNode = RootNode then
Result := RootNode.GetFirstChildElement

else begin
if CurrNode.ElementCount > 0 then begin
Result := CurrNode.GetFirstChildElement;

end else begin
Result :=
TXmlDElement(CurrNode).GetNextSiblingElement;

if Result = nil then begin
while (Result = nil) do begin
CurrNode := CurrNode.ParentNode;
if CurrNode = RootNode then Break;
Result :=
TXmlDElement(CurrNode).GetNextSiblingElement;

end;
end;

end;
end;
CurrNode := Result;

end;
procedure TXmlDElementIterator.Reset(ContextNode:
TXmlDStructureNode; const Pattern: String);

begin
RootNode := ContextNode;
CurrNode := ContextNode;
ElementPattern.Free;
ElementPattern := nil;
if Pattern <> '' then
ElementPattern :=
TXmlDElementPattern.Create(RootNode, Pattern);

end;
{ TXmlDElementPattern }
constructor TXmlDElementPattern.Create(Contextnode:
TXmlDStructureNode; const Pattern: String);

begin
inherited Create;
RootNode := ContextNode;
PatternPieces := TStringList.Create;
ParsePattern(Pattern);

end;
destructor TXmlDElementPattern.Destroy;
begin
PatternPieces.Free;
inherited Destroy;

end;
procedure TXmlDElementPattern.ParsePattern(
const Pattern: String);

var
I: Integer;
Lvl: Integer;
S: String;
procedure ParsePatternLevel(const Pattern: String);
var
I: Integer;
S: String;

begin
S := Pattern;
while (S <> '') do begin
I := Pos('|', S);
if I > 0 then begin
PatternPieces.AddObject(Trim(Copy(S, 1, (I - 1))),
Pointer(Lvl));

S := Copy(S, (I + 1), $7FFF);
end else begin
PatternPieces.AddObject(Trim(S), Pointer(Lvl));
S := '';

end;
end;

end;
begin
PatternPieces.Clear;
S := Pattern;
Lvl := 0;
while (S <> '') do begin
Inc(Lvl);
PatternLevels := Lvl;
I := Pos('/', S);
if I = 0 then begin
ParsePatternLevel(S);
S := '';

end else begin
ParsePatternLevel(Copy(S, 1, (I - 1)));
S := Copy(S, (I + 1), $7FFF);

end;
end;

end;
function TXmlDElementPattern.PatternMatchType(Element:
TXmlDElement): TElementPatternMatch;

var
I: Integer;
Lvl: Integer;

begin
Result := epmNoMatch;
Lvl := Element.Level - RootNode.Level;
if Lvl > PatternLevels then Exit;
for I := 0 to (PatternPieces.Count - 1) do begin
if (Integer(PatternPieces.Objects[I]) = Lvl) and
((PatternPieces[I] = '*') or
(PatternPieces[I] = Element.NodeName)) then begin
Result := epmPathMatch;
Break;

end;
end;
if (Result = epmPathMatch) and (Lvl = PatternLevels) then
Result := epmEndMatch;

end;

56 The Delphi Magazine Issue 53

in the path. We next look at child
elements. For the present pattern
capability, these will never be
matches, but that could change
with an improved pattern class.
Next we look at sibling elements
(again, we know parent elements
are path matches). If an end node
match is found, we’re done. If a
path match is found, we start
examining its child elements.
When no siblings are left, we back
up a level, and check siblings there.
If no path match is found, we go
back another level, and so on.

The TXmlDElementPattern class
parses the pattern, placing the ele-
ment names in a TStringList along
with the level to which they corre-
spond. The matching processing,
as seen in the PatternMatchType
method is straightforward. How-
ever, we are interested in more
than a ‘matches/doesn’t-match’

answer. We need to know we’ve
found a prospective parent-to-
matching-node, an end-node
match, or a non-match. So this
function returns a ‘matches-as-
end-node / matches-as-path-node/
doesn’t-match’ result.

Let’s Pretend
So, let’s put it all together (well,
much of it anyway) with a
down-to-earth practical example.

In this, we’ll build a routine to
transform an XML order docu-
ment, like that shown in Listing 3,
into a billing document, displayed
in the treeview of Figure 2.

One thing you may immediately
notice about the code is that it
appears to be awfully ‘trusting’
that the input data is valid: child
elements appear where they’re

<?xml version="1.0"?>
<Order>
<CustomerNumber>1123A456B</CustomerNumber>
<OrderReceived>1999-12-02</OrderReceived>
<CatalogEdition>NOV99-P</CatalogEdition>
<Items>
<Item>
<CatalogNumber>227861</CatalogNumber>
<Quantity>1</Quantity>

</Item>
<Item>
<CatalogNumber>298662</CatalogNumber>
<Quantity>1</Quantity>

</Item>
<Item>
<CatalogNumber>214573</CatalogNumber>
<Quantity>1</Quantity>

</Item>
</Items>

</Order>

➤ Listing 3

procedure TfrmTestRig.ProcessOrder;
var
OrderDoc: TXmlDDocument;
Order: TXmlDElement;
Items: TXmlDElement;
BillDoc: TXmlDDocument;
Bill: TXmlDElement;
WorkElement: TXmlDElement;
CustFrag: TXmlDDocumentFragment;
ItemsFrag: TXmlDDocumentFragment;
CustomerNumber: String;

begin
// get order information
OrderDoc := TXmlDDocument.Create;
OrderDoc.LoadFromFile('Order.xml');
Order := OrderDoc['Order'];
CustomerNumber := Order['CustomerNumber'].AsString;
Items := Order['Items'];
// set up bill document
OrderTotal := 0.0;
BillDoc := TXmlDDocument.Create;
Bill := BillDoc.CreateElement('CustomerBillingStatement');
BillDoc.AppendChild(Bill);
// first, set up customer header data
CustFrag := BillDoc.CreateDocumentFragment;
PrepareCustomerInfo(BillDoc, CustomerNumber, CustFrag);
// next process items ordered
ItemsFrag := BillDoc.CreateDocumentFragment;
ItemsFrag.AppendChild(BillDoc.CreateElement('Items'));
PrepareItemsInfo(BillDoc, Items, ItemsFrag);
// build billing document
WorkElement := BillDoc.CreateElement('BillingDate');
WorkElement.AsDate := Date;
Bill.AppendChild(WorkElement);
Bill.AppendChild(CustFrag);
Bill.AppendChild(ItemsFrag);
WorkElement := BillDoc.CreateElement('AmountDue');
WorkElement.AsCurrency := OrderTotal;
Bill.AppendChild(WorkElement);
TV.Items.Assign(BillDoc);
TV.FullExpand;
// wrap it up
CustFrag.Free;
ItemsFrag.Free;
OrderDoc.Free;
BillDoc.Free;

end;
procedure TfrmTestRig.PrepareCustomerInfo(BillDoc:
TXmlDDocument; const CustomerNumber: String;
CustomerInfoFrag: TXmlDDocumentFragment);

var
CustInfo: TXmlDElement;

begin
CustInfo := BillDoc.CreateElement('CustomerInformation');
CustomerInfoFrag.AppendChild(CustInfo);
CustInfo.AppendChild(BillDoc.CreateElement('Name',

'David M Baer'));
CustInfo.AppendChild(BillDoc.CreateElement('Address',
'100 Object Ave.'));

CustInfo.AppendChild(BillDoc.CreateElement('City',
'Pascalville'));

CustInfo.AppendChild(BillDoc.CreateElement('ZipCode',
'12345-6789'));

end;
procedure TfrmTestRig.PrepareItemsInfo(BillDoc:
TXmlDDocument; Items: TXmlDElement; ItemsFrag:
TXmlDDocumentFragment);

var
ItemIterator: TXmlDElementIterator;
Item: TXmlDElement;
WorkElement: TXmlDElement;
Quantity: Integer;
Price: Currency;
Tax: Currency;
Shipping: Currency;
procedure PrepareItem(Item: TXmlDElement);
var
OutItem: TXmlDElement;

begin
OutItem := BillDoc.CreateElement('Item');
OutItem.AppendChild(BillDoc.CreateElement('Title',
'X.M.LLoyde, Symphony Nbr. ' +
Copy(Item['CatalogNumber'].AsString, 6, 6)));

Quantity := Item['Quantity'].AsInteger;
Price := 5.99 * Quantity;
Shipping := 2.59 * Quantity;
Tax := (Price + Shipping) * 0.08;
Tax := Trunc(Tax * 100.0) / 100.0;
WorkElement := BillDoc.CreateElement('UnitPrice');
WorkElement.AsCurrency := Price;
OutItem.AppendChild(WorkElement);
WorkElement := BillDoc.CreateElement('Shipping');
WorkElement.AsCurrency := Shipping;
OutItem.AppendChild(WorkElement);
WorkElement := BillDoc.CreateElement('Tax');
WorkElement.AsCurrency := Tax;
OutItem.AppendChild(WorkElement);
ItemsFrag.Elements[0].AppendChild(OutItem);
OrderTotal := OrderTotal + Price + Shipping + Tax;

end;
begin
ItemIterator :=
TXmlDElementIterator.Create(Items, 'Item');

Item := ItemIterator.Next;
while Item <> nil do begin
PrepareItem(Item);
Item := ItemIterator.Next;

end;
ItemIterator.Free;

end;

➤ Listing 4

January 2000 The Delphi Magazine 57

supposed to, dates and numbers
have valid formats, and so forth. In
real life, it would be appropriate
that this input would be validated
by the parser against a schema
declaration. Doing so would, in
fact, allow the parser to ensure
that the document’s content com-
plies with our expectations.

➤ Figure 2

The example does not actually
use schema validation, but I’ve
written the code as if it does,
because the requisite checking
would do little to illuminate the
real purpose of this example. This
is some of the ‘pretend’ aspect.
The other ‘pretend’ part is that
some service functions that pro-
vide, for example, name and
address information based on a
customer account number, are just
dummy routines that supply
invariant values. Again, a realistic
implementation would not add to
what’s being demonstrated.

Here’s what we need. The input
order is an example of a complete
order. At least one element of each
type shown will be present in all
orders. First, we need to supply a
BillingDate element, followed by a
CustomerInformation element con-
taining name and address ele-
ments. Next, we’ll process the Item
elements in the input document,
and produce composite elements
with price, shipping and tax
charges, as well as showing the
item title. Lastly , we’ll produce an
AmountDue element showing the
total charges.

Listing 4 contains the code used
to do this. You’ll notice that we’re
using document fragments to build
up the customer information and
line item information prior to
insertion into the billing docu-
ment. You can also see the use of
an element iterator for reading
through the order items in the
input document. I think you’ll find
this code quite straightforward.

End Game
Well, that’s about all. This is likely
to be the final instalment of this
series and I regret having to say it,
since developing these classes has
been a truly enjoyable exercise. On
the other hand, if you’re finding
them useful, and have some
thoughts for additional enhance-
ments, do send me your ideas!

David Baer is Chief Software
Architect at Spear Technologies in
San Francisco. As a recovering
woodworkaholic, he was rather
dismayed to learn that amazon.
com is now selling power tools.
He can be contacted at
dbaer@speartechnologies.com

	A Fragment Of The Imagination
	Elementary, My Dear Watson
	As You Like It
	Tag, You’re It
	Walking The Walk
	Let’s Pretend
	End Game

